Influence of adsorbed polyelectrolytes on pore size distribution of a water-swollen biomaterial†

نویسندگان

  • Niko Aarne
  • Eero Kontturi
  • Janne Laine
چکیده

Many biomaterials exhibit pronounced swelling and consequently pronounced porous structure when exposed to water. Characterization and tuning of the porosity are important for the fundamental understanding of the behaviour of the biomaterials as well as for many of their applications, both traditional and novel. Here, the porous structure of cellulosic fibres (chemical wood pulp) was analysed in the wet state by differential scanning calorimetry (DSC) with and without adsorbed cationic polyelectrolytes. The polyelectrolytes were low molecular weight (Mw) high charge polybrene (hexadimethrine bromide) and two high Mw high charge PDADMACs (poly(diallyldimethyl ammonium chlorides)) with well-defined Mw distributions. The porosity changes upon adsorption of cationic polyelectrolytes in the wet-state were followed and the pore analysis gave insights into the distribution of the pores in the wet-state and into the changes of the porous structure in the surface as well as within the whole cell wall. By utilizing the well characterized polyelectrolytes we were able to detect subtle changes in the micropores of cellulosic fibres due to the adsorbed polyelectrolytes. The polymers did not affect the pore volumes in the 2.5–17 nm region upon drying, an important finding considering the porosity. Overall, the cationic polyelectrolytes decreased the pore volume by reducing the osmotic pressure. In addition, the results were compared to a physical state change, i.e., drying and rewetting, to observe and compare the wetting hysteresis of the aforementioned fibres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permeation of Polyelectrolytes and Other Solutes into the Pore Spaces of Water-swollen Cellulose: a Review

The rate and extent of transport of macromolecules and other solutes into cellulosic materials and fibers have important applications in such fields as papermaking, textiles, medicine, and chromatography. This review considers how diffusion and flow affect permeation into wood, paper, and other lignocellulosic materials. Because pore sizes within such materials can range from nanometers to mill...

متن کامل

Effect of pore size on adsorption of a polyelectrolyte to porous glass.

The adsorption of quaternized poly(vinylpyridine) (QPVP) on controlled pore glass (CPG) size, over the ionic strength range 0.001-0.5 M was found to display nonmonotonic behavior as a function of pore size. Both adsorption kinetics and ionic strength effects deviated dramatically from behavior typical of adsorption on flat surfaces when the ratio of the pore radius Rp to the polymer hydrodynami...

متن کامل

Synthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution

Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...

متن کامل

Investigating the Influence of Filter Uniformity Coefficient and Effective Pore Size on Critical Hydraulic Gradient and Maximum Erosion of Dispersive and Non-dispersive Samples

Filter is one of the main components of embankment dams. By a simple but effective performance, filter protects the dam against erosion and soil scouring in impervious core caused by leakage (piping) and makes it safe. Interaction between filter and erodible base soil is a complex phenomenon which is dependent upon several factors, and has challenged researchers for better understanding the fil...

متن کامل

Influence of Compaction Condition on the Microstructure of a Non-Plastic Glacial Till

The influence of compaction water content on the structure has been well known forclayey soils, but has never been studied for granular materials. In this paper the structure of a nonplastictill and the effect of compaction moisture is investigated by means of water retention curvestudy, scanning electron microscopy and mercury intrusion porosimetry tests. The results show thatwhen compacted on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013